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Abstract

A beamline containing accelerating cavities sandwiched
between focusing and defocusing quadrupoles is made pe-
riodic by (a) postulating the simplest effect of cavities on
transverse dynamics and (b) adopting a fiction that the ratio
of initial to final momenta, (pi/pf ) – not the difference in
energies, (Ef −Ei) – is the same for all cavities. While not
realistic, the optics of such a linac can be expressed without
reference to initial beam parameters, using methods devised
for storage rings. We will derive results for a simple two-
parameter thin lens model, the parameters being pi/pf and
the ratio of quadrupole spacing to focal length.

Despite substantive differences, a similar language is
used to describe the optics of linacs and storage rings. The
periodicity of storage rings allows unambiguous definitions
of “global lattice functions” – e.g., dispersion, beta, and
phase advance – as properties of the machines themselves,
with no reference to beam parameters other than energy. On
the other hand, the “beta function” of a linac or the “phase
advance” between two points in a linac cannot be defined
in the same way; the boundary condition is not periodic but
typically refers to a set of initial beam parameters. Further,
calculating lattice functions for a storage ring rigorously re-
quires a constant energy machine. This is extended to syn-
chrotrons by assuming that the fields change adiabatically,
over many turns. In contrast, acceleration in a linac can take
place between consecutive quadrupoles.

Suppose that we apply standard formulae involving lat-
tice functions from the theory of storage rings – which we
will call “circular reasoning” (CR) – to a linac – whose
theory we will call “straight thinking” (ST). What magni-
tude of error is made if they are applied without modifica-
tion? We will address this question in the context of a highly
simplified model that straddles the two theories, a periodic
structure that is a straightforward generalization of CR’s
FODO cell: the accelerating FODO cell. It will possess
three formal parameters: the length of a drift section, the
focal lengths of the quadrupoles, and a number represent-
ing the energy gain of the accelerating structure. However,
the drift’s length serves only to set a scale, so our model will
actually possess only two essential parameters.
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1 TRANSFER MATRIX OF AN
ACCELERATING FODO CELL

A simple accelerating FODO cell is sketched in Figure 1.
A drift section, not a bending magnet, separates the quads,
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Figure 1: Sketch of an accelerating FODO cell.

and in it is placed a “thin” (zero length) accelerating struc-
ture. The quadrupoles are also thin, and their magnetic
fields are arranged so that the focal length remains constant;
that is, their gradients scale with momentum.

Ignoring edge focusing, the first order effect of the ac-
celerating structure on transvere coordinates is to “rescale”
the transverse momentum – or, equivalently, to reduce the
transverse velocity – as represented by the transfer matrix,(

x
x′

)
(f)

=
(

1 0
0 pi/pf

)
·
(

x
x′

)
(i)

.

Here pi and pf are the momenta of the particle upon en-
tering and exiting the structure. We define g ≡ pi/pf and
write the transfer matrix for the full “drift” section.

O =
(

1 l/2
0 1

)(
1 0
0 g

)(
1 l/2
0 1

)
=

(
1 l(1 + g)/2
0 g

)
In the limit of no acceleration, g = 1, while g = 0 repre-
sents extreme acceleration. For highly relativistic particles,

pi/pf ≈ Ei/Ef =
1

1 + (Ef − Ei)/Ei
=

1
1 + ∆E/E

.

The transfer matrices through the quads are the same as
those used in CR, so we can immediately write the full
transfer matrix through the accelerating FODO cell, as has
been done in Eq.(1). We are finessing the question, “What
is x′?” The coordinate that makes a drift a linear element is
not the same as the one that makes a thin quadrupole a lin-
ear element. The former requires x′ = px/p3 = dx/ds —
where px is the transverse and p3 the longitudinal momen-
tum, and ds is longitudinal differential arc length — while



M = F ·O ·D ·O

=
(

1 0
−1/f 1

)(
1 l(1 + g)/2
0 g

)(
1 0

1/f 1

)(
1 l(1 + g)/2
0 g

)
(1)

=
(

1 + (l/2f)(1 + g) (1 + g)2(l/2)(1 + l/2f)
+(1/f)(g − 1− (l/2f)(1 + g)) −(l/2f)(1 + g) + (g2 − ((l/2f)(1 + g))2)

)

the latter uses x′ = px/p — where p is the total momen-
tum of the particle, used as a reference scaling parameter. In
confusing these two coordinates throughout the calculation,
we implicitly require that p ≈ p3 and insist that the result-
ing equations are valid only to first order in the transverse
coordinates.

2 EIGENVALUES

The eigenvalues of M determine the phase advance and
amplitude reduction per cell. Because M is a matrix of
real numbers, its eigenvalues come in complex conjugate
pairs; because it is not symplectic, we do not expect the
eigenvalues to lie on the unit circle. We express them as
exp(−Γ± iµ) and obtain them easily as follows.

det(M) = (e−Γ)2 = g2

Tr(M) = 2e−Γ cosµ

= 1 + g2 −
(
l

2f
(1 + g)

)2

The first equation is written quickly by noting that the deter-
minant of a product is the product of the determinants and
that det(O) = g, while det(F ) = det(D) = 1. Rearrang-
ing terms slightly provides the results,

g = e−Γ (2)(
l

2f

)2

=
1 + g2 − 2g cos µ

(1 + g)2

= 1− 4g
(1 + g)2

cos2(µ/2) . (3)

This is illustrated in Figure 2, which shows the surface gen-
erated by Eq.(3). In the limit g = 1 we obtain the usual re-
lation,

l

2f
= sin(µ/2) . (4)

From the first line of Eq.(3), we see that the oscillatory con-
dition, | cosµ | ≤ 1, requires the inequality,

1− g
1 + g

≤ l

2f
≤ 1 ,

which is also evident in Figure 2.

3 β, FROM THE TRANSFER MATRIX

In CR, the eigenvectors of M are related to the “lattice
functions” of the cell. In the limit g = 1, we are familiar
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Figure 2: Ratio of quarter-cell length to focal length.

with the relationship,

1
µ

lnM
CR

=
(

α β
−γ −α

)
. (5)

This representation is possible because of the symplectic-
ity of M

CR
. Although the M of Eq.(1) is not symplectic,

we can generalize Eq.(5) to it by factoring out the adiabatic
damping. That is, eΓM is symplectic, so that we can write

1
µ

ln
(
eΓM

)
=

1
µ

( Γ + lnM ) =
(

α β
−γ −α

)
(6)

in place of Eq.(5).1 Because of Eq.(2) and Eq.(1), we can
obtain the same result by rescaling O, thereby making it
symplectic:

O
symp

≡ g−1/2O =
(
g−1/2 l(g−1/2 + g1/2)/2

0 g1/2

)
Effectively, this removes the “damping” due to accelera-
tion.

With this trick, we can calulate a “beta function” from the
off-diagonal component of M in the usual circular reason-
ing manner.

β sinµ = eΓ M12 =
1
g
M12

Using Equations (1) and (3) and rearranging terms a little
provide the result.

β/l =
2 + g + 1/g

2 sinµ

(
1 +

√
1− 4g

(1 + g)2
cos2(µ/2)

)
1Notice that eΓM , M , and lnM all possess the same eigenvectors.



This is β at the location of the focussing quad; at the de-
focussing quad, merely replace 1 +

√
· · ·with 1−

√
· · ·. A

family of these curves is plotted in Figure 3 for discrete val-
ues of g between 0.1 and 1. Unrealistically extreme accel-
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Figure 3: Maximum beta in the cell.

eration would be required to observe a significant deviation
from the g = 1 limit.

4 PROPAGATING LATTICE
FUNCTIONS

In passing, let us compare expressions for “propagating”
lattice functions in both CR and ST. In ST one defines “lat-
tice functions” in terms of the covariance of the beam.

C =
(
〈x2〉 〈xx′〉
〈x′x〉 〈x′2〉

)
≡ det(C)1/2

(
β −α
−α γ

)
(7)

This is in agreement with Eq.(5) when the covariance ma-
trix is that of an invariant ellipse of the one-turn matrix,
M

CR
. However, the beam need not be matched to the ma-

chine, so thatα and β are arbitrary here. Let M
BA

symbol-
ize the linear transfer matrix from point A to point B in the
machine, so that

C
(B)

= M
BA
· C

(A)
·MT

BA
.

Combining this with the definition in Eq.(7) provides the
following. To save space, let D ≡ det(M

BA
).(

β −α
−α γ

)
(B)

= D−1M
BA

(
β −α
−α γ

)
(A)

MT

BA

(8)
On the other hand, because of the connection with the
period-advance map via Eq.(5),(

α β
−γ −α

)
(B)

= M
BA
·
(

α β
−γ −α

)
(A)

·M−1

BA
.

(9)

This is valid even for g < 1 : according to Eq.(6), we sim-
ply subtract Γ/µ from both sides of the equation.

Superficially Eq.(8) and Eq.(9) look different, but it is a
trivial exercise to show that they are, in fact, equivalent.

5 ERROR IN PHASE ADVANCE

The accelerating FODO cell that we have described,
while enabling us to calculate exact quantities, is not ac-
tually used as the basic unit of “periodically” structured
linacs. In extending CR to realistic linacs, one approach
is to ignore acceleration except for its effect on scaling the
transverse phase space coordinates. While β depends on g,
which changes from cell to cell, this can be safely ignored
because the dependence is so weak for reasonable values of
∆E/E. The phase advance per cell, µ, also changes very
little, but, unlike β, phase accumulates as one progresses
down a chain of cells. The error that one would make by
neglecting its dependence on g can become significant af-
ter a sufficient number of cells. An estimate of this effect
is shown in Figure 4. For a given g and µ, Eq.(3) is first
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Figure 4: Phase error per cell induced by ignoring acceler-
ation.

used to find the parameter l/2f. Using this value, Eq.(4)
then provides the (incorrect) phase advance, say µ1, ob-
tained by ignoring acceleration. The difference, µ− µ1,
is plotted in Figure 4 as a function of µ, the correct phase
advance, while labelling each curve by the corresponding
∆E/E = 1/g − 1. They indicate that, for a 90◦ phase ad-
vance per cell, and for ∆E/E even as large as 0.02, one
would have to go through something like 100 cells before
accumulating a 1◦ phase error. This gives us an estimate of
the extent over which we can trust standard CR formulae
that involve the phase advance, provided we modify them
to take phase space rescaling into account.


